МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования Ивановский государственный энергетический университет имени В.И.Ленина

	УТВЕРЖДАЮ
Декан	
Кокин	Владимир Модестович
	2012 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Математический анализ»

Квалификация (степен	ь) выпускника	бакалавр
		(бакалавр, магистр)
Профиль подготовки	Высокопроизв больших ЭВМ	водительные вычислительные системы на базе
Форма обучения оч	ная	
		(очная, заочная и др.)
Выпускающая кафедра	a BBC	

Семестр	Трудоем- кость з.е./ час.	Лек- ций, час.	Практич. занятий, час.	Лаборат. работ, час.	СРС, час	Форма промежуточного (рубежного) контроля (экзамен/зачет)
1	4/180	40	42		35	экзамен
2	5/180	40	42		35	экзамен
Итого	10/360	80	84		70	

Рабочая программа дисциплины (РПД) составлена в соответствии с требованиями ФГОС ВПО по направлению подготовки 230100 «Информатика и вычислительная техника» с учетом рекомендаций ПрООП по профилю подготовки «Разработка программно информационных систем»
Программу составили: кафедра <u>высшей математики</u> _
Бродовский Максим Алексеевия Ф.И.О., ученое звание
Ф.И.О., ученое звание
Рецензент(ы): (для дисциплин общенаучного цикла – выпускающие кафедры, для дисциплин профессионального цикла представители работодателей)
Программа одобрена на заседании кафедры (УМС):
Наименование кафедры (УМС) (протокол № от)
Председатель цикловой методической комиссии по направлению:
(Ф.И.О., ученое звание, подпись)

СОДЕРЖАНИЕ

- 1. Цели освоения дисциплины.
- 2. Место дисциплины в структуре ООП ВПО.
- 3. Структура и содержание дисциплины.
- 4. Формы контроля освоения дисциплины.
- 5. Учебно-методическое и информационное обеспечение дисциплины.
- 6. Материально-техническое обеспечение дисциплины.

Приложения

Приложение 1. Аннотация рабочей программы.

Приложение 2. Технологии и формы преподавания.

Приложение 3. Технологии и формы обучения.

Приложение 4. Оценочные средства и методики их применения.

(В помощь:

Приложение 5. Справочная информация

Приложение 6. Требования к оформлению РПД)

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является достижение следующих результатов обучения (РО):

- знания:
- на уровне представлений: место и роль общего курса и специальных глав математики в изучении естественнонаучных и специальных дисциплин.
- на уровне воспроизведения: основные понятия, определения и формулы, формулировки теорем, основные свойства изучаемых объектов.
- на уровне понимания: важность корректной постановки задачи, выбора оптимального пути решения поставленной задачи, механизма работы формул и необходимости предоставления адекватных решений поставленных залач.
- умения:
- теоретические: подбор математического аппарата для решения конкретных задач, проверка условий применения подобранных методов решения, правильная интерпретация полученных результатов.
- практические: работа со справочными материалами таблицами и формулами, работа с готовыми электронными продуктами, обработка и представление полученных результатов.
- навыки:

работа с математическим аппаратом при решении различных задач, работа с использованием различных технических средств.

Перечисленные РО являются основой для формирования следующих компетенций: (в соответствии с $\Phi \Gamma OC$ ВПО и требованиями к результатам освоения основной образовательной программы (OOП))

общекультурных

OК-1 владеет культурой мышления, способен к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения;

ОК-6 стремится к саморазвитию, повышению своей квалификации и мастерства;

ОК-7 умеет критически оценивать свои достоинства и недостатки, наметить пути и выбрать средства развития достоинств и устранения недостатков;

ОК-10 использует основные законы естественнонаучных дисциплин в профессиональной деятельности, применяет методы математического анализа и моделирования, теоретического и экспериментального исследования;

ОК-12 имеет навыки работы с компьютером как средством управления информацией;

ОК-13 способен работать с информацией в глобальных компьютерных сетях;

ПК-4 разрабатывать модели компонентов информационных систем, включая модели баз данных.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

Дисциплина «Математический анализ» относится к циклу математических и естественнонаучных (Б2.Б.1) дисциплин.

Необходимыми условиями для освоения дисциплины являются: знание основ алгебры и начала анализа, умения выполнять тождественные преобразования математических выражений, строить графики элементарных функций, применять формулы элементарной математики к решению уравнений и неравенств, владение математической символикой, навыками работы с калькулятором и компьютером.

В таблице приведены предшествующие и последующие дисциплины, направленные на

формирование компетенций, заявленных в разделе «Цели освоения дисциплины»:

№ п/п	Наименование компетенции	Предшествующие дисциплины	Последующие дисциплины (группы дисциплин)				
Общеку	екультурные компетенции						
		История России, философия,	Физика, информатика,				
	ОК-1	иностранный язык.	дискретная математика				
	ОК-6	История России, философия,	Физика, информатика,				
		иностранный язык.	дискретная математика				
		Философия, культорология,	Физика, теория				
	ОК-7	история науки и культуры	вычислительных процессов на МВС, БЖД.				
	ОК-10	Линейная алгебра и	Физика, дискретная				
		аналитическая геометрия	математика, математическая				
			логика и теория алгоритмов				
	OK-12	Линейная алгебра и	Информатика, методы				
		аналитическая геометрия	вычислений, операционные				
			системы				
	OK-13	Иностранный язык	Физика, информатика,				
			дискретная математика				
Профес	сиональные компетенци	u					
	ПК-4	Физика	Информатика, теория				
			вероятностей и				
			математическая статистика				

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 10 зачетных единиц, 360 часов.

Наимен не не не	Виды учебной нагрузки и их трудоемкость, часы	
-----------------	---	--

			Лекции	Практические занятия	Лабораторные работы	Курсовое проектирование	CPC	Всего часов
	1	Элементы теории множеств	2				2	
1	2	Функции одной действительн ой переменной	2				2	
	3	Теория пределов	5	8			4	
	4	Производные и дифференциа лы	14	8			12	
	5	Приложения производной к исследовани ю функций	6	6			6	
	6	Неопределен ный интеграл	6	14			6	
	7	Определенн ый интеграл	9	6			8	
2	8	Функции нескольких переменных	9	12			8	
	9	Дифференци альные уравнения	13	10			9	
	10	Числовые и функциональ ные ряды	10	12			9	
	11	Кратные интегралы	4	8			4	
	ИТОГО:		80	84			70	360

3.1. Лекции

№ п/п	Номер раздела дисциплины	Объем, часов	Тема лекции
1	1	2	Сведения о множествах и логической символике. Свойства множества действительных чисел R.
2	2	2	Понятие функции, способы задания функции. Классификация функций. Основные элементарные функции их свойства и графики. Основные характеристики функций. Понятия сложной и обратной функций.
3	3	3	Понятие предела функции в точке. Предел числовой последовательности. Односторонние пределы. Бесконечно малые и бесконечно большие функции, их свойства. Теоремы о пределах. Виды неопределенностей и способы их раскрытия. І и ІІ замечательные пределы.
			5

4	3	2	Непрерывные функции, их свойства. Точки разрыва и их классификация.
5	4	4	Определение производной функции в точке. Определение дифференцируемости и дифференциала. Геометрический смысл производной и дифференциала. Механический смысл производной. Правила дифференцирования (производная суммы, произведения и частного двух функций). Вывод табличных производных.
6	4	3	Производная сложной функции. Инвариантность формы первого дифференциала. Применение дифференциала к приближенным вычислениям. Производная обратной функции. Производная функции, заданной параметрически. Производная функции, заданной неявно. Производные и дифференциалы высших порядков.
7	4	4	Основные теоремы дифференциального исчисления: теоремы Ролля, Лагранжа, Коши. Правило Лопиталя раскрытия неопределённостей 0⁄0 и ∞⁄∞.
8	4	3	Асимптотические разложения элементарных функций: формулы Тейлора и Маклорена с остаточным членом в форме Лагранжа.
9	5	4	Необходимое и достаточное условия монотонности функции. Критические точки функции. Точки экстремума функции. Необходимое и достаточное условия экстремума функции. Достаточное условие выпуклости и вогнутости графика функции. Точки перегиба. Асимптоты кривой, типы асимптот. Общая схема исследования функции и построения ее графика.
10	5	2	Гиперболические функции. Основные соотношения между ними.
11	6	6	Первообразная функция, неопределенный интеграл, его основные свойства. Таблица формул интегрирования. Интегрирование заменой переменной, интегрирование по частям, интегрирование рациональных дробей, интегрирование некоторых простейших иррациональных и трансцендентных функций.
12	7	5	Определенный интеграл Римана, основные свойства определенного интеграла, его геометрический смысл. Теорема об интегрировании четных и нечетных функций по симметричному промежутку. Теорема о среднем значении. Дифференцирование определенного интеграла по переменному верхнему пределу. Вывод формулы Ньютона-Лейбница. Интегрирование по частям и замена переменной в определенном интеграле. Несобственные интегралы с бесконечными пределами и от
13	7	2	разрывных функций. Признаки сходимости. Интегралы, зависящие от параметра, непрерывность, дифференцирование и интегрирование по параметру.
14	7	2	Геометрические (длина дуги, площадь плоской фигуры, объем тела вращения), физические и механические приложения определенного интеграла. Понятие функции нескольких переменных. График функции
15	8	5	двух переменных, линии и поверхности уровня. Предел и непрерывность. Полное приращение и полный дифференциал функции нескольких переменных как линейная форма от приращений аргументов. Достаточное условие

			дифференцируемости. Производная по направлению и градиент. Дифференцирование сложных функций. Касательная плоскость и нормаль к поверхности. Частные
			производные и дифференциалы высших порядков
16	8	2	Формула Тейлора для функции нескольких переменных.
			Экстремумы функции нескольких переменных, необходимое
17	8	2	и достаточное условия экстремума. Условный экстремум.
1,	O	2	Наибольшее и наименьшее значения функции нескольких
			переменных в замкнутой области.
			Основные понятия теории дифференциальных
			уравнений: поле направлений, решения, интегральные
			кривые, векторное поле, фазовые кривые. Задача Коши: теорема существования и единственности решения задачи
			Коши. Дифференциальные уравнения с разделяющимися
18	9	4	переменными, однородные, линейные, уравнение Бернулли,
			уравнения в полных дифференциалах. Дифференциальные
			уравнения высших порядков, формулировка теоремы
			существования и единственности решения задачи Коши.
			Дифференциальные уравнения высших порядков,
			допускающие понижение порядка.
			Линейные дифференциальные уравнения. Линейная
10	9	4	зависимость функций и определитель Вронского, понятие
19	9	4	фундаментальной системы решений. Теорема о структуре общего решения линейного однородного дифференциального
			уравнения.
			Линейные однородные дифференциальные уравнения с
			постоянными коэффициентами. Характеристическое
			уравнение. Вывод формул для общего решения однородного
20	9	3	уравнения 2-го порядка. Формулировка аналогичного правила
20	,	3	для уравнений произвольного порядка. Метод вариации
			постоянных. Метод неопределенных коэффициентов решения
			неоднородного дифференциального уравнения. Принцип
			наложения частных решений Системы дифференциальных уравнений. Нормальные
			системы дифференциальных уравнении. пормальные системы. Теорема существования и единственности решения
21	9	2.	задачи Коши для нормальной системы. Системы линейных
		_	дифференциальных уравнений с постоянными
			коэффициентами.
			Основные понятия теории числовых рядов: сходимость,
			расходимость, сумма. Необходимое условие сходимости ряда.
			Достаточные признаки сходимости рядов с положительными
22	10	4	членами: признаки сравнения, Даламбера, интегральный
			признак Коши. Признак Лейбница для знакочередующихся
			рядов. Абсолютная и условная сходимости знакопеременного
			ряда Область сходимости функционального ряда. Понятие о
			равномерной сходимости. Мажорантный ряд. Формулировка
23	10	2	свойств равномерно сходящихся функциональных рядов
			(непрерывность суммы, почленное дифференцирование и
			интегрирование).
			Степенные ряды. Теорема Абеля. Интервал и радиус
24	10	2	сходимости степенного ряда Ряды Тейлора и Маклорена.
			Разложение элементарных функций в степенные ряды.
			Ряд Фурье. Ортогональные системы функций,
25	10	2	тригонометрическая система. Вывод формул для коэффициентов ряда Фурье. Сходимость ряда Фурье,
			достаточное условие разложимости функции в ряд Фурье.
			gottato moe jenosne pasiomimoeth wynkini s pag wypse.

Ряды Фурье для четных и нечетных функций, заданных на отрезке [0; l]. Ряд Фурье в комплексной форме. Элементы гармонического анализа.

Двойной интеграл. Определение, свойства, геометрический смысл. Сведение двойного интеграла к повторному. Замена переменных в двойном интеграле. Вычисление двойного интеграла в декартовой и полярной системах координат. Вычисление площадей, объемов и площади поверхности с помощью двойного интеграла. Вычисление массы плоской пластинки.

Тройные интегралы. Сведение тройного интеграла к повторному. Вычисление тройного интеграла в декартовой системе координат. Замена переменных в тройном интеграле: тройные интегралы в цилиндрических и сферических координатах. Применение кратных интегралов к решению задач механики.

Итого: 80

11

11

26

27

3.2. Практические занятия (семинары)

2

2

№ п/п	Номер раздела дисциплины	Объем, часов	Тема практического занятия
11/11	дисциплины	часов	Пределы: определения предела числовой
1	3	2	последовательности и предела функции, основные
			свойства пределов, вычисление пределов.
2	2	4	Раскрытие некоторых видов неопределённостей, 1 и 2
2	3	4	замечательные пределы.
			Непрерывность функций: односторонние пределы,
3	3	2	непрерывность функции в точке, классификация точек
			разрыва, функции непрерывные на отрезке.
			Производная: определение, геометрический и
4	4	4	физический смыслы, правила вычисления производных,
			таблица производных.
			Дифференциал функции: определение, геометрический
			смысл дифференциала, формула приближенного
5			вычисления с помощью дифференциала.
3	4	4	Производные параметрических и неявно заданных
			функций, уравнения касательной и нормали к плоской
			кривой в заданной точке, производные и дифференциалы
			высших порядков. Формула Тейлора.
			Теоремы Ролля, Лагранжа и Коши, теоремы о
6	5	2	возрастании и убывании функции на интервале,
			экстремум функции в точке.
			Необходимый и достаточный признаки экстремума
			функции в точке, критические точки функции,
7	5	2	направления выпуклости и вогнутости графика функции,
			точки перегиба, критические точки производной
			функции.
			Асимптоты графика функции: вертикальные и
8	5	2	наклонные, схема полного исследования функции и
			построения её графика, наибольшее и наименьшее
			значения функции на отрезке.
	_		Неопределённый интеграл: определения первообразной
9	6	4	функции на интервале и неопределённого интеграла,
			свойства неопределённого интеграла, таблица

			интегралов.
			Методы интегрирования: непосредственное
			интегрирования, интегрирования по частям. Интегралы
10	6	2	$\mathbf{p}_{\mathbf{M}} = \begin{pmatrix} \mathbf{p}_{\mathbf{M}} \mathbf{x} + \mathbf{N} & \mathbf{d}_{\mathbf{x}} \mathbf{y} & \mathbf{d}_{\mathbf{x}} \\ \mathbf{p}_{\mathbf{M}} \mathbf{x} + \mathbf{N} & \mathbf{d}_{\mathbf{x}} \mathbf{y} & \mathbf{d}_{\mathbf{x}} \end{pmatrix}$
			вида: $\int \frac{Mx+N}{ax^2+bx+c} \ dx$ и $\int \frac{Mx+N}{\sqrt{ax^2+bx+c}} \ dx$.
			Интегралы вида:
1.1	6		$\int \sin\alpha \cdot \sin\beta \ dx, \int \sin\alpha \cdot \cos\beta \ dx, \int \cos\alpha \cdot \cos\beta \ dx,$
11	6	2	
			$\int \sin^n x \cdot \cos^m x \ dx.$
12	6	4	Интегрирование рациональных дробей.
13	6	2	Замена переменной в неопределённом интеграле,
15			интегрирование подстановками.
			Определённый интеграл: определение, геометрический и
14	7	2	физический смыслы, основные свойства, вычисление,
			определённый интеграл в полярных координатах.
_	_		Приложения определённого интеграла: площадь плоской
15	7	2	области, длина дуги плоской кривой, объём тела
			вращения.
16	7	2	Несобственные интегралы: определения, геометрический
			смысл, свойства, вычисление.
17	8 4	4	Функции нескольких переменных: область определения,
8	4	линии и поверхности уровня, непрерывность, частные	
			производные первого порядка.
18	8	2	Производная неявно заданной функции, уравнения касательной плоскости и нормали к поверхности,
16	O	4	градиент функции, производная в заданном направлении.
			Производная сложной функции, дифференциал функции,
			формула приближенного вычисления с помощью
19	8	4	дифференциала, частные производные и дифференциалы
		,	высших порядков. Формула Тейлора для функции двух
			переменных.
			Экстремумы функции двух переменных: необходимый и
			достаточный признаки экстремума функции двух
20	8	2	переменных, условный экстремум, наибольшее и
			наименьшее значения функции двух переменных в
			замкнутой области.
			Решение дифференциальных уравнений с разделяющимися
21	0	1	переменными, однородных, линейных, уравнений Бернулли,
21	9	4	уравнений в полных дифференциалах, а также дифференциальных уравнений высших порядков,
			дифференциальных уравнении высших порядков, допускающие понижение порядка.
			Решение линейных однородных дифференциальных
22	0	1	уравнений с постоянными коэффициентами (метод
22	9	4	неопределенных коэффициентов, метод вариации
		1	постоянных).
23	9	2	Решение систем дифференциальных уравнений.
			Определение сходимость, расходимость рядов, нахождение
			суммы рядов. Проверка необходимого условия сходимости ряда. Применение достаточных признаков сходимости рядов с
24	10	4	положительными членами: признаков сходимости рядов с
-	10	'	интегральный признак Коши. Применение признака Лейбница
			для знакочередующихся рядов. Исследование абсолютной и
			условной сходимости знакопеременных рядов.

25	10	2	Определение областей сходимости функциональных рядов. Рассмотрение понятия о равномерной сходимости. Изучение свойств равномерно сходящихся функциональных рядов (непрерывность суммы, почленное дифференцирование и интегрирование)	
26	10	4	Изучение степенных рядов. Применение теоремы Абеля. Нахождение интервала и радиуса сходимости степенного ряда. Разложение элементарных функций в ряды Тейлора и Маклорена.	
27	10	2	Разложение функций в ряд Фурье.	
28	11	2 Двойной интеграл: определение, основные свой вычисление, двойной интеграл в полярных коорди		
29	11	2	Приложения двойного интеграла: масса материальной пластины, объём тела, координаты центра тяжести плоской пластины.	
30	11	2	Тройной интеграл: определение, основные свойства, вычисление, тройной интеграл в циллиндрических и сферических координатах.	
31	11	2	Приложения тройного интеграла: объём тела, масса тела, координаты центра тяжести тела.	
Итого:		84		

3.3. Лабораторные работы

№ п/п	Номер раздела дисциплины	Наименование лабораторной работы	Наименование лаборатории	Трудоемкость, часов

3.4. Самостоятельная работа студента

Раздел дисциплины	№ п/п	Вид СРС	Трудоемкость, часов
1		Изучение лекций и подготовка к семинарам.	2
2		Изучение лекций и подготовка к семинарам.	2
3		Изучение лекций и подготовка к семинарам. Типовой расчет по теме «Пределы»	4
4		Изучение лекций и подготовка к семинарам. Типовой расчет по теме «Производные»	12
5		Изучение лекций и подготовка к семинарам.	6
6	Изучение лекций и подготовка к семинара Типовой расчет по теме «Неопределённы интеграл»		6
7	Изучение лекций и подготовка к семинарам. Типовой расчет по теме «Определённый интеграл»		8

8	Изучение лекций и подготовка к семинарам. Типовой расчет по теме «Функции нескольких переменных»	8
9	Изучение лекций и подготовка к семинарам. Типовой расчет по теме «Дифференциальные уравнения».	9
10	Изучение лекций и подготовка к семинарам. Типовой расчет по теме «Числовые ряды». Типовой расчет по теме «Функциональные ряды».	9
11	Изучение лекций и подготовка к семинарам. Типовой расчет по теме «Кратные интегралы»	4
	Итого:	70

3.5. Домашние задания, типовые расчеты и т.п.

Домашнее задание не предусмотрено

Типовой расчет:

- 1. Типовой расчет по теме «Пределы» (трудоёмкость 4 часа)
- 2. Типовой расчет по теме «Производные» (трудоёмкость 4 часа)
- 3. Типовой расчет по теме «Неопределённый интеграл» (трудоёмкость 4 часа
- 4. Типовой расчет по теме «Определённый интеграл» (трудоёмкость 4 часа)
- 5. Типовой расчет по теме «Кратные интегралы» (трудоёмкость 4 часа)
- 6. Типовой расчет по теме «Функции нескольких переменных» (трудоёмкость 4 часа)
- 7. Типовой расчет по теме «Дифференциальные уравнения» (трудоёмкость 4 часа)
- 8. Типовой расчет по теме «Числовые ряды» (трудоёмкость 4 часа)
- 9. Типовой расчет по теме «Функциональные ряды» (трудоёмкость 4 часа)
- 10. Типовой расчет по теме «Поверхностные интегралы» (трудоёмкость 4 часа)

3.6. Рефераты

не предусмотрено

3.7. Курсовые проекты (работы) по дисциплине

не предусмотрено

4. ФОРМЫ КОНТРОЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Контроль освоения дисциплины производится в соответствии с ПОЛОЖЕНИЕМ о системе РИТМ в ИГЭУ.

Текущий контроль студентов производится в дискретные временные интервалы (в соответствии с приказом ректора о проведении ТК и ПК) преподавателем, ведущими практические занятия по дисциплине. Оценка текущего контроля выставляется с учётом выполнения домашних заданий, посещаемости и активности на занятиях.

Промежуточный контроль по дисциплине проходит в форме контрольной работы, которая включает в себя ответы на теоретические вопросы и решение задач.

Рубежный (итоговый) контроль студентов производится по окончании модуля (семестра) в виде экзамена.

(Фонды оценочных средств, включающие типовые задания, контрольные работы, тесты и методы контроля, позволяющие оценить PO по данной дисциплине, включены в состав УМК дисциплины и перечислены в Приложении 4)

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- а) основная литература:
- 1. Пискунов Н.С. Дифференциальное и интегральное исчисление: Учеб. для втузов. В 2-х т. М.: Интеграл-Пресс, 2001.
- 2. Шипачев В.С. Высшая математика. Учеб. для нематем. спец. вузов/ Под ред. А.Н. Тихонова. М.: Высш. шк., 1990.
- 3. Бугров Я.С., Никольский С.М. Высшая математика. Дифференциальное и интегральное исчисление. М.: Наука, 1984.
- 4. Бугров Я.С., Никольский С.М. Высшая математика. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. – М.: Наука, 1985.
- 5. Сборник задач по математике для втузов. В 2-х т. Под ред. А.В. Ефимова, Б.П. Демидовича. М.: Наука, 1981.
- 6. Бермант, Анисим Федорович. Краткий курс математического анализа: [учебник для втузов] / А. Ф. Бермант, И. Г. Араманович.—8-е изд., исправ. и доп..—М.: Наука. Главная редакция физико-математической литературы, 1973.—720 с: ил.
- 7. Задачи и упражнения по математическому анализу для втузов: [учебное пособие для втузов] / Г. С. Бараненков [и др.]; под ред. Б. П. Демидовича.—Изд. 8-е.—М.: Наука. Главная редакция физико-математической литературы, 1972.—472 с: ил.
- 8. Демидович, Борис Павлович. Сборник задач и упражнений по математическому анализу: [учебное пособие для университетов и пед. институтов] / Б. П. Демидович.— Изд. 7-е, стер..—М.: Наука, 1969.—544 с: ил.
- 9. Фихтенгольц, Григорий Михайлович. Курс дифференциального и интегрального исчисления: [учебник для вузов]: [в 3 т.] / Г. М. Фихтенгольц.—Изд. 8-е.—М.: ФИЗМАТЛИТ: Лаборатория Знаний, 2003.
- 10. Кудрявцев, Лев Дмитриевич. Краткий курс математического анализа: [учебник для вузов] / Л. Д. Кудрявцев.—М.: Наука. Главная редакция физико-математической литературы, 1989.—736 с.
- 11. Виноградова, Ирина Андреевна. Задачи и упражнения по математическому анализу: в 2 кн.: [учебное пособие для вузов] / И. А. Виноградова, С. Н. Олехник, В. А. Садовничий.—Изд. 2-е, перераб.—М.: Высшая школа, 2002
- 12. Курс высшей математики. Введение в математический анализ. Дифференциальное исчисление: лекции и практикум: [учебное пособие для вузов].—3-е изд., стер.— СПб.[и др.]: Лань, 2008.—288 с.
 - b) дополнительная литература:
- 1. Письменный Д.Т. Конспект лекций по высшей математике. В 2-х частях. М.: Рольф, 2000
- 2. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. В 2-х частях. Учеб. пособие для втузов. М.: Высш. шк., 1980.
- 3. Демидович Б.П., Кудрявцев В.А. Краткий курс высшей математики. Учеб. пособие для вузов. М.: Астрель-АСТ, 2001.
- 4. Акилов, Глеб Павлович. Основы математического анализа / Г. П. Акилов, В. Н. Дятлов; Академия наук СССР. Сибирское отделение, Институт математики; под ред. Ю. Г. Решетняка.—Новосибирск: Наука, 1980.—336 с.
- 5. Калугина, Татьяна Федоровна. Математический анализ / Т. Ф. Калугина, В. Ю. Киселев; Министерство общего и профессионального образования Российской Федерации, Ивановская государственная архитектуно-строительная академия.— Иваново: Б.и., 1997.—432 с: ил

с) программное обеспечение, Интернет-ресурсы, электронные библиотечные системы:

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. Лекции:
 - а) аудитория с достаточным числом посадочных мест,
 - b) учебники из основного списка литературы в достаточном количестве.
- 2. Практические занятия:
 - а) аудитория с достаточным числом посадочных мест,
 - b) задачник из основного списка литературы в достаточном количестве.
- 3. Лабораторные занятия:
 - а) компьютерный класс с достаточным числом посадочных мест
 - b) компьютерный тренажер MathTest
 - с) компьютерная система MathCAD.

Приложение 1 к рабочей программе дисциплины «Наименование дисциплины»

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

«Математический анализ»

Дисциплина «Математический анализ» относится к циклу математических и естественнонаучных дисциплин.

Дисциплина реализуется на факультете ИВТ кафедрой ВМ.

Дисциплина нацелена на формирование общекультурных компетенций ОК-1, ОК-6, ОК-7, ОК-10, ОК-12, ОК-13, профессиональных компетенций ПК-4 выпускника.

Содержание дисциплины охватывает круг вопросов, связанных с основами исследования функций, действий над ними, их применениям для изучения широкого круга задач математики и ее приложений.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости в форме опроса, промежуточный контроль в форме контрольной работы или компьютерного тестирования и рубежный (итоговый) контроль в форме экзамена в конце каждого семестра.

Общая трудоемкость освоения дисциплины составляет 8 зачетных единиц, 288 часов. Программой дисциплины предусмотрены лекционные занятия -80 часов, практические занятия -84 часа, самостоятельная работа студента -70 часов.

Приложение 2 к рабочей программе дисциплины «Наименование лисциплины»

ТЕХНОЛОГИИ И ФОРМЫ ПРЕПОДАВАНИЯ

Рекомендации по организации и технологиям обучения для преподавателя

I. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

Информационные технологии: использование электронных образовательных ресурсов при самостоятельной работе с содержанием дисциплины, а также при подготовке к лекциям и практическим занятиям.

Работа в команде: совместная работа студентов в группе при коллективном решении задач на практических занятиях с коллективным обсуждением алгоритмов и результатов решений.

II. Виды и содержание учебных занятий

Теоретические занятия (лекции) – 80 часов.

Теоретические занятия по дисциплине проводятся в интерактивном режиме в форме **лекции-беседы**. Основная направленность — вызвать у студентов мотивацию к пониманию существа рассматриваемых в лекции вопросов, а не к формальной записи ее содержания. Структура каждой лекции следующая:

- в начале объявляется тема очередной лекции;
- дается общая характеристика познавательных «проблем», подлежащих последующему рассмотрению в ходе лекции, акцентируется внимание на наиболее значимых из них;
- делается небольшая преамбула к очередной «проблеме», дающая основание для последующего диалога и логически подготавливающая студентов к диалогу;
- формулируется вопрос к аудитории о возможных вариантах решения поставленной «проблемы»;
 - выслушиваются все варианты ответов;
- поочередно путем коллективного обсуждения оценивается правильность или целесообразность каждого из высказанных ответов и делается окончательный вывод о решении поставленной «проблемы»;
 - делается небольшая преамбула к следующей «проблеме» и т.д.

Важным является доброжелательность отношения к каждому из высказанных студентами мнений независимо от степени его истинности, чтобы не погасить желание участвовать в дискуссии.

В конце каждой лекции делается небольшое заключение, студентам предлагается задать вопросы и сообщается тема следующей лекции.

Практические занятия - 84 часа.

Практические занятия по дисциплине проводятся в интерактивном режиме по технологии работа в команде.

Содержанием практических занятий является решение задач.

Организация занятий следующая:

- в начале занятия объявляется его тема, и ставятся познавательные цели;
- преподавателем демонстрируется вариант решения одной из типовых задач (при необходимости);
 - студенты поочередно выполняют решение задачи у доски;

- в ходе решения проводятся коллективные обсуждения, выявляются ошибки и недочеты;
- преподаватель подводит итоги работы команд, оценивает степень достижения поставленных целей, объявляет тему следующего занятия.

Управление самостоятельной работой студента – 70 часов.

Содержанием внеаудиторной самостоятельной работы студентов является работа с учебным материалом по конспекту лекций, по учебникам.

Итогом самостоятельной работы студента по разделу дисциплины в совокупности с работой на аудиторных занятиях является оценка по разделу.

Приложение 3 к рабочей программе дисциплины «Наименование дисциплины»

ТЕХНОЛОГИИ И ФОРМЫ ОБУЧЕНИЯ

Рекомендации по освоению дисциплины для студента

Трудоемкость освоения дисциплины составляет 288 часов, из них 164 часов аудиторных занятий и 124 часа, отведенные на самостоятельную работу студента.

Рекомендации по распределению учебного времени по видам самостоятельной работы и разделам дисциплины приведены в таблице.

Контроль освоения дисциплины осуществляется в соответствии с ПОЛОЖЕНИЕМ о системе РИТМ в $И\Gamma$ ЭУ.

Вид работы	Содержание (перечень вопросов)	Т рудоем кость, час.	Рекомендации			
	Раздел №. 1 «Элементы теории множеств»					
Подготовка к	Изучение		См. конспект лекций,			
лекциям	теоретического	2	учебник [1], [9].			
№ 1.	материала.					
Раздел №. 2 «Функции одной действительной переменной»						
Подготовка к	Изучение		См. конспект лекций,			
лекциям	теоретического	2	учебник [1], [9].			
№ 2.	материала.					

		Раздел №. 3 «Тео	рия пред	(елов»	
Подготовка лекциям № 3, № 4.	К	Изучение теоретического материала.	2	См. конспект лекций,	
Подготовка практическим занятиям № 1 - № 3.	К	Выполнение домашних заданий.	5	См. конспект лекций, учебник [1], [9], задачник [5], [8].	
		Раздел №. 4 «Производн	ые и диф	ференциалы»	
Подготовка лекциям № 5 - № 8.	К	Изучение теоретического материала.	2	См. конспект лекций, учебник [1], [9].	
Подготовка практическим занятиям № 4, № 5.	К	Выполнение домашних заданий.	8	См. конспект лекций, учебник [1], [9], задачник [5], [8].	
Разд	ел	№. 5 «Приложения произво	одной к и	сследованию функций»	
Подготовка лекциям № 9, № 10.	К	Изучение теоретического материала.	2	См. конспект лекций, учебник [1], [9].	
Подготовка практическим занятиям № 6 - № 8.	К	Выполнение домашних заданий.	5	См. конспект лекций, учебник [1], [9], задачник [5], [8].	
		Раздел №. 6 «Неопред	еленный	интеграл»	
Подготовка лекциям № 11.	К	Изучение теоретического материала.	3	См. конспект лекций, учебник [1], [9].	
Подготовка практическим занятиям № 9 - № 13.	К	Выполнение домашних заданий.	5	См. конспект лекций, учебник [1], [9], задачник [5], [8].	
		Раздел №. 7 «Опреде	ленный і	интеграл»	
Подготовка лекциям № 12 - № 14.	К	Изучение теоретического материала.	3	См. конспект лекций, учебник [1], [9].	
Подготовка практическим занятиям № 14 - № 16	к б.	Выполнение домашних заданий.	5	См. конспект лекций, учебник [1], [9], задачник [5], [8].	
Раздел №. 8 «Функции нескольких переменных»					
Подготовка лекциям № 15 - № 17.	К	Изучение теоретического материала.	4	См. конспект лекций, учебник [1], [9].	
Подготовка практическим занятиям № 17 - № 20	к).	Выполнение домашних заданий.	9	См. конспект лекций, учебник [1], [9], задачник [5], [8].	

Раздел №. 9 «Дифференциальные уравнения»					
Подготовка	К	Изучение	4	См. конспект лекций,	
лекциям		теоретического материала.		учебник [1], [9].	
№ 18 - № 20.					
Подготовка	К	Выполнение	9	См. конспект лекций,	
практическим		домашних заданий.		учебник [1], [9], задачник [5], [8].	
занятиям № 21 - № 23	3.				
		Раздел №. 10 «Числовые и	функцио	ональные ряды»	
Подготовка	К	Изучение	4	См. конспект лекций,	
лекциям		теоретического материала.		учебник [1], [9].	
№ 22 - № 25.					
Подготовка	К	Выполнение	9	См. конспект лекций,	
практическим		домашних заданий.		учебник [1], [9], задачник [5], [8].	
занятиям № 24 - №27	' .				
Раздел №. 11 «Кратные интегралы»					
Подготовка	К	Изучение	4	См. конспект лекций,	
лекциям		теоретического материала.		учебник [1], [9].	
№ 26, № 27.					
Подготовка	К	Выполнение	9	См. конспект лекций,	
практическим		домашних заданий.		учебник [1], [9], задачник [5], [8].	
занятиям № 28 - № 3	1.				

Приложение 4 к рабочей программе дисциплины «Наименование лисциплины»

ОЦЕНОЧНЫЕ СРЕДСТВА И МЕТОДИКИ ИХ ПРИМЕНЕНИЯ

Оценивание уровня учебных достижений студента осуществляется в виде текущих (ТК1 и ТК2) и промежуточных (ПК1 и ПК2) контролей и рубежного (итогового) контроля в соответствии с ПОЛОЖЕНИЕМ о системе РИТМ в ИГЭУ.

Фонды оценочных средств

Фонды оценочных средств, позволяющие оценить РО по данной дисциплине, включают в себя:

- типовые расчеты из учебных пособий Л.6 − Л.9;
- варианты заданий к ПК1 и ПК2;
- комплект экзаменационных билетов.

Критерии оценивания

Оценка ТК1 выставляется по ТР1, оценка ПК1 – среднее арифметическое оценок ТР2 и самостоятельной работы к ПК1, оценка ТК2 выставляется по ТР3, оценка ПК2 –оценка самостоятельной работы к ПК2.

Экзамен.

Предусмотренный по данной дисциплине экзамен проводится в письменной форме с последующим собеседованием. Оценка знаний соответствует требованиям системы «РИТМ».