МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования

«Ивановский государственный энергетический университет имени В.И. Ленина»

	УТВЕРЖДАЮ
Декан ИВТФ	В.М. Кокин
«»	2011r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

(Б2.В.ДВ.2)

Направление подготов	ки <u>230100 «Ин</u>	форматика и вычислительная техника»
Квалификация (степен	ь) выпускника	бакалавры
	_	(бакалавр, магистр)
Профиль подготовки	«Высокопроизв больших ЭВМ»	одительные вычислительные системы на базе
Форма обучения очн	ая	
		(очная, заочная и др.)
Выпускающая кафедра	«Высокопро	ризводительные вычислительные системы»
Кафедра-разработчик	РПД <u>«Высоко</u>	производительные вычислительные системы»

Семестр	Трудоем- кость з.е./ час.	Лек- ций, час.	Практич. занятий, час.	Лаборат. работ, час.	Курсовое проекти- рование, час	СРС, час	Форма промежуточного (рубежного) контроля (экзамен/зачет)
5		22	-	32	-	54	Зачёт
6		22	-	32	-	18	Экзамен (36)
Итого	6/216	44	-	64	-	72	

Программа составлена в соответствии с требованиями ФГОС ВПО с учетом рекомендаций ПрООП ВПО по направлению 230100 – «Информатика и вычислительная техника, профилю подготовки «Высокопроизводительные вычислительные системы на базе больших ЭВМ».

Программу составили:	
кафедра «Высокопроизводительные вычисли	тельные системы»
	Высокопроизводительные вычислительные си-
Рецензент:	
Программа одобрена на заседании каф ные системы» ИГЭУ	редры «Высокопроизводительные вычислитель-
« <u> </u>	11 года, протокол №
Заведующий кафедрой	й к.т.н., доцент С.Г. Сидоров
Программа одобрена на заседании цик.	ловой методической комиссии ИВТФ
1 1 1	«» 2011 года, протокол №
Председатель ЦМК	И.Д. Ратманова

СОДЕРЖАНИЕ

- 1. Цели освоения дисциплины.
- 2. Место дисциплины в структуре ООП ВПО.
- 3. Структура и содержание дисциплины.
- 4. Формы контроля освоения дисциплины.
- 5. Учебно-методическое и информационное обеспечение дисциплины.
- 6. Материально-техническое обеспечение дисциплины.

Приложения

- Приложение 1. Аннотация рабочей программы.
- Приложение 2. Технологии и формы преподавания.
- Приложение 3. Технологии и формы обучения.
- Приложение 4. Оценочные средства и методики их применения.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является достижение следующих результатов обучения (РО):

- знания:
- классификации уравнений математической физики;
- уравнения теплопроводности и диффузии;
- волнового уравнения;
- уравнения Пуассона;
- уравнения гидромеханики вязкой несжимаемой жидкости;
- уравнения электродинамики (уравнения Максвелла);
- интегральных уравнений (уравнения Фредгольма первого и второго рола).
- уравнений Больцмана.
- умения:
- интегрировать уравнения теплопроводности и диффузии;
- применять специальные функции при решении уравнений в частных производных.

Перечисленные РО являются основой для формирования следующих компетенций:

общекультурных:

- OK-10 использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования;
- OK-11 способность и готовность владеть основными методами, способами и средствами получения, хранения, переработки информации, использовать компьютер как средство работы с информацией;
- ОК-12 иметь навыки работы с компьютером как средством управления информацией.

профессиональных:

- ПК-2 осваивать методики использования программных средств для решения практических задач;
- ПК-4 разрабатывать модели компонентов информационных систем, включая модели баз данных;
- ПК-5 проектно-технологическая деятельность: разрабатывать компоненты программных комплексов и баз данных, использовать современные инструментальные средства и технологии программирования.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

Дисциплина «Уравнения математической физики» относится к дисциплинам по выбору цикла математических и естественнонаучных дисциплин.

Необходимыми условиями для освоения дисциплины являются: знание основ математики, умение работы на компьютере с прикладными программами, умение программировать на алгоритмических языках программирования, знание теории и умение решать задачи элементарной и высшей математики.

В таблице приведены предшествующие и последующие дисциплины, направленные на формирование компетенций, заявленных в разделе «Цели освоения дисциплины»:

№ п/п	Наименование компетенции	Предшествующие дисциплины	Последующие дисциплины (группы дисциплин)
Общеку	льтурные компетенциі	ı	
1	ОК-10	Математический анализ, Линей-	Системы искусственного интел-
		ная алгебра и аналитическая гео-	лекта, Нейрокомпьютерные си-
		метрия, Физика, Дискретная ма-	стемы, Моделирование техниче-
		тематика, Математическая логика	ских систем на МВС, Моделиро-
		и теория алгоритмов, Теория вы-	вание энергетических систем на
		числительных процессов на МВС,	МВС, Моделирование процессов
		Теория вероятностей и математи-	в сплошных средах, Моделиро-
		ческая статистика, Методы вы-	вание сложных систем, Итоговая
		числений, Сложность вычислений	государственная аттестация
2	OK-11	Иностранный язык, Информати-	Защита информации, Системы
		ка, Дискретная математика, Ма-	искусственного интеллекта,
		тематическая логика и теория ал-	Нейрокомпьютерные системы,
		горитмов, Сложность вычисле-	Моделирование технических
		ний, Базы данных, Программиро-	систем на МВС, Моделирование
		вание, Введение в специальность,	энергетических систем на МВС,
		Архитектура вычислительных	Моделирование процессов в
		систем, Архитектура многопро-	сплошных средах, Моделирова-
		цессорных вычислительных си-	ние сложных систем, Итоговая
		стем	государственная аттестация
3	OK-12	Математический анализ, Линей-	Защита информации, Системы
		ная алгебра и аналитическая гео-	искусственного интеллекта,
		метрия, Информатика, Методы	Нейрокомпьютерные системы,
		вычислений, Сложность вычис-	Моделирование технических
		лений, Операционные системы,	систем на МВС, Моделирование
		Сети и телекоммуникации, Базы	энергетических систем на МВС,
		данных, Компьютерная графика,	Моделирование процессов в
		Программирование, Параллель-	сплошных средах, Моделирова-
		ное программирование, Техноло-	ние сложных систем, Многопо-

		T	T							
		гии параллельного программирования, Компьютерные технологии, Теория параллельного программирования, Программное обеспечение МВС	точное и распределенное программирование, GRID вычисления и облачные вычисления, Итоговая государственная аттестация							
Профес	Профессиональные компетенции									
4	ПК-2	Физика, Информатика, Теория вероятностей и математическая статистика, Методы вычислений, Сложность вычислений, ЭВМ и периферийные устройства, Операционные системы, Базы данных, Инженерная графика, Компьютерная графика, Программирование, Параллельное программирование, Технологии параллельного программирования, Архитектура многопроцессорных вычислительных систем, Компьютерные технологии	Защита информации, Системы искусственного интеллекта, Нейрокомпьютерные системы, Моделирование технических систем на МВС, Моделирование энергетических систем на МВС, Моделирование процессов в сплошных средах, Моделирование сложных систем, Многопоточное и распределенное программирование, GRID вычисления и облачные вычисления, Итоговая государственная аттестация							
5	ПК-4	Математический анализ, Физика, Информатика, Теория вероятностей и математическая статистика, Методы вычислений, Базы данных, Программирование, Параллельное программирование, Технологии параллельного программирования, Компьютерные технологии, Интернет технологии, Теория параллельного программирования, Программное обеспечение МВС	Защита информации, Системы искусственного интеллекта, Нейрокомпьютерные системы, Моделирование технических систем на МВС, Моделирование энергетических систем на МВС, Моделирование процессов в сплошных средах, Моделирование сложных систем, Многопоточное и распределенное программирование, GRID вычисления и облачные вычисления, Итоговая государственная аттестация							
6	ПК-5	Теория вычислительных процессов на МВС, Методы вычислений, Базы данных, Программирование, Параллельное программирование, Технологии параллельного программирования, Архитектура вычислительных систем, Архитектура многопроцессорных вычислительных систем, Компьютерные технологии, Теория параллельного программирования, Программное обеспечение МВС	Системы искусственного интеллекта, Нейрокомпьютерные системы, Моделирование технических систем на МВС, Моделирование энергетических систем на МВС, Моделирование процессов в сплошных средах, Моделирование сложных систем, Многопоточное и распределенное программирование, GRID вычисления и облачные вычисления, Итоговая государственная аттестация							

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 6 зачетных единиц, 216 часов.

ной			Ви	иды учебной	нагрузки и и	іх трудоемко	сть, часы	
№ модуля образовательной программы	№ раздела	Наименование раздела дисциплины	Лекции	Практические занятия	Лабораторные работы	Курсовое про- ектирование	CPC	Всего часов
1	1	Часть 1	22	-	32	-	54	108
1	2	Часть 2	22	-	32	-	18	72
ИТОГО (без учета экзамена):		44	-	64	-	72	180	

3.1. Лекции (5-6 семестр) – 44 часа

№ п/п	Номер раздела дисциплины	Объем, часов	Тема лекции
1	1	2	Уравнения математической физики и их классификация (эллиптические, параболические и гиперболические).
2	1	2	Уравнение теплопроводности. Граничные и начальные условия.
3	1	2	Метод сеток. Явная разностная схема. Её устойчивость.
4	1	2	Одномерный, двумерный и трёхмерный случаи.
5	1	2	Теплопроводность и граничные условия.
6	1	2	Метод прогонки и граничные условия.
7	1	2	Теплопроводность. Осесимметричный случай.
8	1	2	Расщепление многомерных процессов на одномерные.
9	1	2	Уравнение Пуассона. Граничные условия.
10	1	2	Методы решения уравнения Пуассона (метод установления, метод Либмана, метод верхней релаксации).
11	1	2	Методы решения уравнения Пуассона (попеременно-треугольный метод).
12	2	2	Оптимизация. Целевая функция. Одномерный поиск.
13	2	2	Многомерный поиск. Методы: градиентов, сопряженных градиентов, оврагов, случайного поиска.
14	2	2	Поиск глобального минимума на множестве локальных.
15	2	2	Поиск при ограничениях на область поиска. Штрафы.
16	2	2	Генетические алгоритмы.
17	2	2	Собственные числа и собственные векторы матриц. Круги Гершгорина.
18	2	2	QR-алгоритм, LR-алгоритм.
19	2	2	Интегральные уравнения и их решения. Прямые методы (метод Галёркина, метод коллокаций, метод наименьших квадратов).
20	2	2	Решение уравнений Навье-Стокса.

21	2	2	Метод Булеева.
22	2	2	Решение уравнений Навье-Стокса прямыми методами.
	Итого:	44	

3.2. Лабораторные работы (5-6 семестры) – 64 часа

№ п/п	Номер раздела дисциплины	Наименование лабораторной работы	Наименование лаборатории	Трудо- емкость, часов
1	1	Уравнение теплопроводности. Граничные и начальные условия.	Компьютерный класс	2
2	1	Метод сеток. Явная разностная схема. Её устойчивость.	Компьютерный класс	2
3	1	Метод сеток. Явная разностная схема. Её устойчивость.	Компьютерный класс	2
4	1	Одномерный, двумерный и трёхмерный случаи.	Компьютерный класс	2
5	1	Метод прогонки и граничные условия.	Компьютерный класс	2
6	1	Метод прогонки и граничные условия.	Компьютерный класс	2
7	1	Теплопроводность. Осесимметричный случай	Компьютерный класс	2
8	1	Теплопроводность. Осесимметричный случай	Компьютерный класс	2
9	1	Расщепление многомерных процессов на одномерные.	Компьютерный класс	2
10	1	Расщепление многомерных процессов на одномерные.	Компьютерный класс	2
11	1	Расщепление многомерных процессов на одномерные. Компьютерный кла		2
12	1	Уравнение Пуассона. Граничные условия.	Компьютерный класс	2
13	1	Методы решения уравнения Пуассона (метод установления, метод Либмана, метод верхней релаксации).	Компьютерный класс	2
14	1	Методы решения уравнения Пуассона (метод установления, метод Либмана, метод верхней релаксации).	Компьютерный класс	2
15	1	Методы решения уравнения Пуассона (метод установления, метод Либмана, метод верхней релаксации).	Компьютерный класс	2
16	1	Методы решения уравнения Пуассона (попеременно-треугольный метод).	Компьютерный класс	2
17	2	Оптимизация. Целевая функция. Одномерный поиск.	Компьютерный класс	2
18	2	Многомерный поиск. Методы: градиентов, сопряженных градиентов, оврагов, случайного поиска.	Компьютерный класс	2
19	2	Многомерный поиск. Методы: градиентов, сопряженных градиентов, оврагов, случайного поиска.	Компьютерный класс	2

20	2	Многомерный поиск. Методы: градиентов, сопряженных градиентов, оврагов, случайного поиска.	Компьютерный класс	2
21	2	Поиск глобального минимума на множестве локальных.	Компьютерный класс	2
22	2	Поиск глобального минимума на множестве локальных.	Компьютерный класс	2
23	2	Поиск при ограничениях на область поиска. Штрафы.	Компьютерный класс	2
24	2	Генетические алгоритмы.	Компьютерный класс	2
25	2	Собственные числа и собственные векторы матриц. Круги Гершгорина.	Компьютерный класс	2
26	2	QR-алгоритм, LR-алгоритм.	Компьютерный класс	2
27	2	QR-алгоритм, LR-алгоритм.	Компьютерный класс	2
28	2	Интегральные уравнения и их решения. Прямые методы (метод Галёркина, метод коллокаций, метод наименьших квадратов).	Компьютерный класс	2
29	2	Интегральные уравнения и их решения. Прямые методы (метод Галёркина, метод коллокаций, метод наименьших квадратов).	Компьютерный класс	2
30	2	Решение уравнений Навье-Стокса.	Компьютерный класс	2
31	2	Решение уравнений Навье-Стокса.	Компьютерный класс	2
32	2	Решение уравнений Навье-Стокса.	Компьютерный класс	2
			Итого:	64

3.3. Самостоятельная работа студента

Раздел дисциплины	№ п/п	Вид СРС	Трудоемкость, часов
Вознан 1	1	Уравнение теплопроводности.	27
Раздел 1	Раздел 1 2 Уравнение Пуассона. Волновое уравнение.		27
	1	Оптимизация.	6
Раздел 2	2	Собственные числа и собственные векторы.	6
3		Уравнения Навье-Стокса.	6
		Итого:	72

4. ФОРМЫ КОНТРОЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Контроль освоения дисциплины производится в соответствии с ПОЛОЖЕНИЕМ о системе РИТМ в ИГЭУ.

Текущий контроль студентов производится в дискретные временные интервалы (в соответствии с приказом ректора о проведении ТК и ПК по системе РИТМ в ИГЭУ) лектором и преподавателем, ведущими лабораторные работы по дисциплине в следующих формах:

- выполнение и защита лабораторных работ;
- посещаемость и активность на занятиях.

Промежуточный контроль по дисциплине проходит в форме зачёта.

Рубежный (итоговый) контроль студентов производится по завершении изучения дисциплины, проходит в форме экзамена.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- а) основная литература:
 - 1. Алгоритмы и программы для многопроцессорных суперкомпьютеров: учебное пособие / В. В. Пекунов [и др.]; Федеральное агентство по образованию, ГОУВПО "Ивановский государственный энергетический университет им. В. И. Ленина", ГОУВ-ПО"Ивановская государственная текстильная академия", Научно-исследовательский институт математического моделирования ИГТА.—Иваново: Б.и., 2007.—132 с.— ISBN 978-5-89482-315-3.
 - 2. Численные методы и параллельные вычисления для задач механики жидкости, газа и плазмы: учебное пособие / Э. Ф. Балаев [и др.]; Иван. гос. энерг. ун-т, Иван. гос. текстильная акад. [и др.].—Иваново: Б.и., 2003.—336 с.—ISBN 5-89482-871-8.
 - 3. **Ясинский, Федор Николаевич**. Математическое моделирование с помощью компьютерных сетей: учебное пособие / Ф. Н. Ясинский, Л. П. Чернышева, В. В. Пекунов; М-во образования Рос. Федерации, Иван. гос. энерг. ун-т.—Иваново: Б.и., 2000.—202 с.: ил.—ISBN 5-89482-147-9.
 - 4. **Пантелеев, Андрей Владимирович**. Методы оптимизации в примерах и задачах: [учебное пособие для втузов] / А. В. Пантелеев, Т. А. Летова.—Изд. 3-е, стер.—М.: Высшая школа, 2008.—544 с: ил.—(Прикладная математика для ВТУЗов).—ISBN 978-5-06-004137-8.
- б) дополнительная литература:
 - 1. **Воеводин В.В., Воеводин Вл.В.** Параллельные вычисления. -СПб.: БХВ- Петербург, 2002.-608с.
 - 2. Эндрюс Г.Р. Основы многопоточного, параллельного и распределенного программирования.: Пер.с англ.-М.: Издательский дом «Вильямс», 2003.-512с.
 - 3. **Корнеев В.В.** Параллельные вычислительные системы.- М.: «Нолидж»,1999.-320с.
 - 4. **Богачёв К.Ю.** Основы параллельного программирования. М. :БИНОМ. Лаборатория знаний, 2003.-342с.
 - 5. Эхтер Ш., Робертс Дж. Многоядерное программирование. –СПб.:Питер,2010.-316с.
 - 6. **Боресков А.В., Харламов А.А.** Основы работы с технологией CUDA.- М.:ДМК Пресс, 2011,-232с.
 - 7. **Сандерс** Дж., Кэндрот Э. Технологии CUDA в примерах: введение в программирование графических процессоров: Пер. с англ. М.:ДМК Пресс, 2011.-232c.
 - 8. **Миллер Р., Боксер Л.** Последовательные и параллельные алгоритмы: Общий подход. Пер. с англ.- М.: БИНОМ. Лаборатория знаний, 2012. 406 с.: ил.

- 9. **Рост, Рэнди**. OpenGL. Трехмерная графика и язык программирования шейдеров / Р. Дж. Рост; пер. с англ. О. Вахромовой.—М. [и др.]: Питер, 2010.—432 с.—(Для профессионалов).—Доп. тит. л. на англ. яз.—ISBN 5-469-00383-3
- 10. **Хьюз, Камерон, Хьюз, Трейси**. Параллельное и распределенное программирование на C++.: Пер. с англ. М.: Издательский дом «Вильямс», 2004. 672 с.: ил.
- 11. **Брайант, Рэндал Э.** Компьютерные системы: архитектура и программирование. Взгляд программиста: [пер. с англ.] / Р. Э. Брайант, Д. О'Халларон.—СПб.: БХВ-Петербург, 2005.—1104 с: схемы.—Парал. тит. англ.—ISBN 5-94157-433-9.
- 12. **Рыбников К.К.** Введение в дискретную математику и теорию решения экстремальных задач на конечных множествах. М.: Гелиос APB, 2010. 320 с.
- 13. **Джонс М. Т.** Программирование искусственного интеллекта в приложениях/ М. Тим Джонс; Пер. с англ. Осипов А.И. М.: ДМК Пресс, 2006. 312 с.: ил.
- 14. **Кьоу,** Джим. Объектно-ориентированное программирование / Дж. Кьоу, М. Джеанини. СПб.: Питер, 2005. 238 с: ил. (Серия "Учебный курс"). Парал. тит. англ. ISBN 5-469-00462-7
- 15. **Пышкин, Евгений Валерьевич**. Основные концепции и механизмы объектно-ориентированного программирования: [учебное пособие для вузов] / Е. В. Пышкин.—СПб.: БХВ-Петербург, 2005.—640 с: ил+ 1 электрон. опт. диск (CD-ROM).—(Теория и технология программирования).—ISBN 5-94157-554-8
- в) программное обеспечение, Интернет-ресурсы, электронные библиотечные системы:
 - 1. операционная система Windows
 - 2. Visual Studio 2008
 - 3. Delphi 7
 - 4. MathCAD 14
 - 5. www://parallel.ru
 - 6. www://intuit.ru
 - 7. поисковые системы: Google, Yandex
 - 8. электронная библиотека на сайте ИГЭУ: http://library.ispu.ru
 - 9. мультимедиа материалы на сайте кафедры BBC: http://vvs.ispu.ru.
 - 10. ЭБС издательства «ЮРАЙТ» по адресу: www.biblio-online.ru.
 - 11. Онлайн доступ к российским и зарубежным научным информационным ресурсам в тестовом режиме консорциума НЭИКОН по адресу: www.neicon.ru
 - 12. Научная электронная библиотека по адресу: www.elibrary.ru.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

1. Лекции:

- а) комплект электронных презентаций / слайдов,
- b) аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук).
- 2. Лабораторные работы:
 - а) компьютерный класс;
 - b) пакеты ПО общего назначения: программы-оболочки, текстовые редакторы;
 - с) университетский кластер;
 - d) специализированное ПО: MPI, OpenMP, CUDA.
 - e) системы программирования: Visual Studio, Delphi

3. Самостоятельная работа

- а) компьютерная лаборатория, оснащенная современной компьютерной техникой с выходом в глобальную сеть Internet, соединенную с локальной сетью ИГЭУ;
- b) пакеты ПО общего назначения;
- с) специализированное ПО;
- d) методические материалы поддержки дисциплины на сайте кафедры BBC (http://vvs.ispu.ru).

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ «Уравнения математической физики»

Дисциплина по выбору «Уравнения математической физики» является частью математического и естественнонаучного цикла дисциплин (вариативная часть) подготовки студентов по направлению подготовки 230100 Информатика и вычислительная техника. Дисциплина реализуется на факультете Информатики и вычислительной техники кафедрой «Высокопроизводительные вычислительные системы».

Дисциплина нацелена на формирование общекультурных компетенций:

- OK-10 использование основные законы естественнонаучных дисциплин в профессиональной деятельности, применение методов математического анализа и моделирования, теоретического и экспериментального исследования;
- OK-11 осознание сущности и значения информации в развитии современного общества; владение основными методами, способами и средствами получения, хранения, переработки информации;
- OK-12 приобретение навыков работы с компьютером как средством управления информацией (OK-12);

профессиональных компетенций выпускника

- ПК-2 освоение методики использования программных средств для решения практических задач;
- ПК-4 разрабатывать модели компонентов информационных систем, включая модели баз данных;
- ПК-5 проектно-технологическая деятельность: разрабатывать компоненты программных комплексов и баз данных, использовать современные инструментальные средства и технологии программирования;

Содержание дисциплины охватывает следующий круг вопросов: Классификация уравнений математической физики. Уравнения теплопроводности диффузии и методы их интегрирования. Волновые уравнения. Уравнения Пуассона. Уравнения гидромеханики вязкой несжимаемой жидкости. Уравнения электродинамики (уравнения Максвелла). Интегральные уравнения (уравнения Фредгольма первого и второго рода). Специальные функции и их применение при решении уравнений в частных производных. Уравнение Больцмана.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельную работу студентов, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости в форме отчетов по выполненным лабораторным заданиям, промежуточный контроль в форме зачёта и рубежный (итоговый) контроль в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 6 зачетных единиц, 216 часов.

Программой дисциплины предусмотрены лекционные (44 часа), лабораторные занятия (64 часа), самостоятельная работа студента (72 часа).

ТЕХНОЛОГИИ И ФОРМЫ ПРЕПОДАВАНИЯ

Рекомендации по организации и технологиям обучения для преподавателя

І. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

Информационные технологии: использование электронных образовательных ресурсов при подготовке к лекциям и лабораторным работам.

Междисциплинарное обучение: использование знаний из высшей математики при выполнении расчетов на лекциях и лабораторных работах.

Интерактивные формы проведения занятий: использование мультимедийных обучающих материалов, а также средств оценки знаний и формирование индивидуальной образовательной траектории.

Проблемное обучение: стимулирование студентов к самостоятельному приобретению знаний, необходимых для решения конкретной проблемы.

Контекстное обучение: мотивация студентов к усвоению знаний путем выявления связей между конкретным знанием и его применением.

II. Виды и содержание учебных занятий

Раздел 1

Теоретические занятия (лекции) – 22 часа

Лекция 1. Уравнения математической физики и их классификация (эллиптические, параболические и гиперболические). – 2 часа.

Рассматривается классификация уравнений математической физики. Указываются признаки эллиптических, параболических и гиперболических уравнений.

Лекция 2. Уравнение теплопроводности. Граничные и начальные условия. — 2 часа.

Уравнения теплопроводности. Указываются три типа граничных условий.

Лекция 3. Метод сеток. Явная разностная схема. Её устойчивость. — 2 часа.

Для уравнений теплопроводности вводится явная разностная схема. Указываются условия устойчивости.

Лекция 4. Одномерный, двумерный и трёхмерный случаи. – 2 часа.

Уравнения теплопроводности пишутся для одномерного, двумерного и трёхмерного случаев. Показаны алгоритмы интегрирования.

Лекция 5. Теплопроводность и граничные условия. – 2 часа.

Рассматривается реализация граничных условий при явной разностной схеме.

Лекция 6. Метод прогонки и граничные условия. – 2 часа.

Приведена неявная разностная схема и расчет прогоночных коэффициентов при граничных условиях первого, второго и третьего рода.

Лекция 7. Теплопроводность. Осесимметричный случай. – 2 часа.

Рассматривается явная схема уравнения теплопроводности в осесимметричном случае.

Лекция 8. Расщепление многомерных процессов на одномерные. – 2 часа

В двумерном и трёхмерном случае приводится метод расщепления на одномерные задачи. К каждой из них применяется метод прогонки.

Лекция 9. Уравнение Пуассона. Граничные условия. – 2 часа

Рассматриваются разностные схемы для уравнений Пуассона.

Лекция 10. Методы решения уравнения Пуассона (метод установления, метод Либмана, метод верхней релаксации).— 2 часа

Изложены наиболее распространённые методы решения уравнения Пуассона.

Лекция 11. Методы решения уравнения Пуассона (попеременно-треугольный метод).— 2 часа

Рассматривается попеременно-треугольный метод.

Лабораторные работы – 32 часа, 16 работ

Лабораторная работа 1. Уравнение теплопроводности. Граничные и начальные условия. – 2 часа.

Форма проведения занятия — в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: изучить процессы распространения тепла в твёрдом теле при различных граничных условиях. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 2-3. Метод сеток. Явная разностная схема. Её устойчивость. — 4 часа.

Форма проведения занятия — в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: моделировать распространение тепла, используя явную разностную схему. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 4. Одномерный, двумерный и трёхмерный случаи. – 2 часа.

Форма проведения занятия — в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: сопоставить процессы распространения тепла в одномерном, двумерном и трёхмерном случаях. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 5-6. Метод прогонки и граничные условия. – 4 часа.

Форма проведения занятия — в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: ознакомиться с методом прогонки и его реализацией в одномерном случае при различных граничных условиях. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 7-8. Теплопроводность. Осесимметричный случай – 4 часа.

Форма проведения занятия — в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: рассмотреть процесс распространения тепла, если тело осесимметричное. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 9-11. Расщепление многомерных процессов на одномерные. – 6 часов

Форма проведения занятия – в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: ознакомиться с методом расщепления. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 12. Уравнение Пуассона. Граничные условия. — 2 часа

Форма проведения занятия — в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: рассмотреть применение уравнения Пуассона в электротехнике и гидродинамике. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 13-15. Методы решения уравнения Пуассона (метод установления, метод Либмана, метод верхней релаксации).— 6 часа

Форма проведения занятия – в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: изучить основные методы решения уравнения Пуассона. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 16. Методы решения уравнения Пуассона (попеременнотреугольный метод). – 2 часа

Форма проведения занятия – в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: изучить наиболее быстрый метод решения уравнения Пуассона. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Управление самостоятельной работой студента – 54 часа

Реализуемые формы управления самостоятельной работой студента: консультации в ходе выполнения лабораторных работ, проверка отчетов по лабораторным работам, проверка домашних заданий и контрольных работ, консультации, подготовка к зачёту.

Разлел 2

Теоретические занятия (лекции) – 22 часа

Лекция 12. Оптимизация. Целевая функция. Одномерный поиск. – 2 часа.

Ставится задача оптимизации и указываются её приложения. Рассматривается одномерный поиск и способы его выполнения.

Лекция 13. Многомерный поиск. Методы: градиентов, сопряженных градиентов, оврагов, случайного поиска. – 2 часа.

Рассматриваются методы оптимизации в многомерном случае.

Лекция 14. Поиск глобального минимума на множестве локальных. – 2 часа.

Излагается задача поиска глобального минимума. Рассматриваются трудности её решения.

Лекция 15. Поиск при ограничениях на область поиска. Штрафы. – 2 часа.

Задача оптимизации рассматривается в случае, когда на область поиска наложены ограничения. Излагается метод штрафов.

Лекция 16. Генетические алгоритмы. – 2 часа.

Рассматриваются генетические и эволюционные алгоритмы.

Лекция 17. Собственные числа и собственные векторы матриц. Круги Гершгорина. – 2 часа.

Ставится задача отыскания собственных чисел и собственных векторов матриц. Поясняется геометрический смысл процессов отыскания этих объектов.

Лекция 18. QR-алгоритм, LR-алгоритм. – 2 часа.

Разбирается наиболее часто применяемые способы отыскания собственных чисел.

Лекция 19. Интегральные уравнения и их решения. Прямые методы (метод Галёркина, метод коллокаций, метод наименьших квадратов).— 2 часа.

Излагаются прямые методы решения интегральных уравнений.

Лекция 20. Решение уравнений Навье-Стокса – 2 часа.

Рассматриваются уравнения Навье-Стокса и способы их решения в простейших случаях (ползучие течения).

Лекция 21. Метод Булеева – 2 часа.

Излагается метод Н.И. Булеева и его приложение в сложных случаях.

Лекция 22. Решение уравнений Навье-Стокса прямыми методами – 2 часа

Рассматриваются способы решения уравнения Навье-Стокса прямыми методами (метод Галёркина, метод коллокаций, метод наименьших квадратов).

Лабораторные работы – 32 часа, 16 работ

Лабораторная работа 17. Оптимизация. Целевая функция. Одномерный поиск.— 2 часа.

Форма проведения занятия – в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: научить программировать

оптимизационные задачи в одномерном случае. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 18-20. Многомерный поиск. Методы: градиентов, сопряженных градиентов, оврагов, случайного поиска. — 6 часов.

Форма проведения занятия – в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: научить решать оптимизационные задачи в многомерном случае. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 21-22. Поиск глобального минимума на множестве локальных. – 4 часа.

Форма проведения занятия — в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: на тестовых примерах рассмотреть поиск глобального минимума. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 23. Поиск при ограничениях на область поиска. Штрафы. – 2 часа.

Форма проведения занятия – в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: промоделировать поиск минимума, когда область поиска ограничена. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 24. Генетические алгоритмы – 2 часа.

Форма проведения занятия – в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: рассмотреть поиск минимума, используя генетические и эволюционные алгоритмы. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 25. Собственные числа и собственные векторы матриц. Круги Гершгорина. – 2 часа.

Форма проведения занятия — в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: изучить способы поиска собственных чисел и собственных векторов матриц. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 26-27. QR-алгоритм – 4 часа.

Форма проведения занятия – в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: выполнить поиск собственных чисел с помощью QR-алгоритма. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 28-29. Интегральные уравнения и их решения. Прямые методы (метод Галёркина, метод коллокаций, метод наименьших квадратов). – 4 часа.

Форма проведения занятия – в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: решить интегральные уравнения с помощью одного из прямых методов. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Лабораторная работа 30-32. Решение уравнений Навье-Стокса. – 6 часов.

Форма проведения занятия — в подгруппах по 10-12 человек. Выполняются индивидуальные задания в соответствии с вариантом. Цель работы: решить уравнения Навье-Стокса одним из подходящих методов. Используемое оборудование: университетский кластер, компьютеры, оснащенные графическими платами nVidia с поддержкой технологии CUDA.

Управление самостоятельной работой студента – 18 часов.

Реализуемые формы управления самостоятельной работой студента: консультации в ходе выполнения лабораторных работ, проверка отчетов по лабораторным работам, проверка домашних заданий и контрольных работ, консультации, подготовка к экзамену.

ТЕХНОЛОГИИ И ФОРМЫ ОБУЧЕНИЯ

Рекомендации по освоению дисциплины для студента

Трудоемкость освоения дисциплины составляет 216 часов, из них 108 часов аудиторных занятий и 72 часа, отведенных на самостоятельную работу студента.

Рекомендации по распределению учебного времени по видам самостоятельной работы и разделам дисциплины приведены в таблице. Контроль освоения дисциплины осуществляется в соответствии с ПОЛОЖЕНИЕМ о системе РИТМ в ИГЭУ.

Вид работы	Содержание (перечень вопросов)	Трудоемкость, час.	Рекомендации
Раздел №1			
Подготовка к лекциям	Изучение теоретического материала	28	См. соотв. главы в литературе [1]-[4] доп. литературе [1]-[15], эл. библиотечной системе ИГЭУ [8],[10],[11],[12], сети Интернет [5], [6], [7], [9]
Подготовка к лабораторным работам	Изучение теоретического материала	28	См. конспект лекций и описание лабораторной работы
Оформление отчетов по ла- бораторным работам	Формирование теоретической части (математической модели), распечатка разработанной компьютерной программы, блок-схема алгоритма, анализ полученных результатов, ответы на контрольные вопросы	18	См. описание лабораторной работы
Итого по разделу		72	

ОЦЕНОЧНЫЕ СРЕДСТВА И МЕТОДИКИ ИХ ПРИМЕНЕНИЯ

Оценивание уровня учебных достижений студента осуществляется в виде текущего, промежуточного и рубежного (итогового) контроля в соответствии с ПОЛОЖЕНИЕМ о системе РИТМ в ИГЭУ.

Фонды оценочных средств

Фонды оценочных средств, позволяющие оценить РО по данной дисциплине, включают в себя:

- комплект заданий к лабораторным работам;
- шаблоны отчетов по лабораторным работам;
- комплект зачётных вопросов;
- комплект экзаменационных вопросов.

Критерии оценивания

Лабораторные работы

Допуск к ЛР:

Допуск к выполнению ЛР происходит при условии наличия у студента печатной версии титульного листа отчета по лабораторной работе.

Отчет по ЛР:

Отчет по лабораторной работе представляется в печатном виде в формате, предусмотренном шаблоном отчета по лабораторной работе. Защита отчета проходит в форме доклада студента по выполненной работе и ответов на вопросы преподавателя.

В случае если оформление отчета и поведение студента во время защиты соответствуют указанным требованиям, студент получает максимальное количество баллов.

Основаниями для снижения количества баллов являются:

- небрежное выполнение,
- низкое качество графического материала,
- плохое знание теоретического материала.

Отчет не может быть принят и подлежит доработке в случае:

- отсутствия необходимых разделов,
- отсутствия необходимого графического материала,
- критических ошибок в ходе выполнения работы и неверного результата.

Зачёт

Зачёт проходит в письменной форме с последующим собеседованием. Билет включает 1 теоретический вопрос, исчерпывающий ответ по которому оценивается в 5 баллов. Итоговая оценка по дисциплине выставляется в соответствии с системой «Ритм» с учетом оценок текущего контроля.

Экзамен

Экзамен проходит в письменной форме с последующим собеседованием. Билет включает 1 теоретический вопрос, исчерпывающий ответ по которому оценивается в 5 баллов. Итоговая оценка по дисциплине выставляется в соответствии с системой «Ритм» с учетом оценок текущего контроля.